Sigma Point Kalman Filter for Underwater Terrain-based Navigation
نویسندگان
چکیده
Precise underwater navigation is crucial in a number of marine applications. Navigation of most autonomous underwater vehicles (AUVs) is based on inertial navigation. Such navigation systems drift off with time and external fixes are needed. This paper concentrates on one such method, namely terrain based navigation, where position fixes are found by comparing measurements with a prior map. Nonlinear Bayesian methods like point mass and particle filters are often used for this problem. Such methods are often computationally demanding. The sigma point Kalman filter (or unscented Kalman filter) is a nonlinear filter that does not resort to local linearizations, estimating the probability densities using a few deterministically chosen sigma points. The sigma point Kalman filter is not as computationally demanding as the aforementioned methods, and using real AUV data, the accuracies obtained are comparable to those of the point mass and particle filters.
منابع مشابه
Practical Evaluation of EKF1 and UKF2 Filters for Terrain Aided Navigation
This article would study batch and recursive methods that used in terrain navigation systems. Terrain navigation has a lot ofdisadvantages and so researchers have been studied on different method of aided navigation for many years. Therefore, more types of aided navigation systems were introduced with advantages and disadvantages in terms of practical and theoretical. One of the main ideas for ...
متن کاملDesign and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملTerrain-Based Localization using Particle Filter for Underwater Na- vigation
Underwater localization is a crucial capability for reliable operation of various types of underwater vehicles including submarines and underwater robots. However, sea water is almost impermeable to high-frequency electromagnetic waves, and thus absolute position fixes from Global Positioning System (GPS) are not available in the water. The use of acoustic telemetry systems such as Long Baselin...
متن کاملTerrain aided navigation
In many autonomous underwater vehicle (AUV) applications, a basic problem is to determine the AUV's position accurately. Terrain aided navigation, which supports the existing inertial navigation system with terrain information, is a promising method. In this thesis, the Kalman filter and the Bayesian approach implemented as point mass filter are used in terrain aided navigation. To formulate a ...
متن کاملNew Algorithms Based on Sigma Point Kalman Filter Technique for Multi-sensor Integrated RFID Indoor/Outdoor Positioning
The demand for seamless positioning has been significantly high. The methods of providing continuous indoor/outdoor positions seamlessly and the algorithms for smoothly transferring the estimation of positions from multiple positioning systems have attracted a great interest in the Location Based Services (LBS) research community. Most seamless positioning techniques are based on integrated met...
متن کامل